对抗性示例是故意生成用于欺骗深层神经网络的输入。最近的研究提出了不受规范限制的不受限制的对抗攻击。但是,以前的不受限制攻击方法仍然存在限制在黑框设置中欺骗现实世界应用程序的局限性。在本文中,我们提出了一种新的方法,用于使用GAN生成不受限制的对抗示例,其中攻击者只能访问分类模型的前1个最终决定。我们的潜在方法有效地利用了潜在空间中基于决策的攻击的优势,并成功地操纵了潜在的向量来欺骗分类模型。通过广泛的实验,我们证明我们提出的方法有效地评估了在黑框设置中查询有限的分类模型的鲁棒性。首先,我们证明我们的目标攻击方法是有效的,可以为包含307个身份的面部身份识别模型产生不受限制的对抗示例。然后,我们证明所提出的方法还可以成功攻击现实世界的名人识别服务。
translated by 谷歌翻译
Aspect or query-based summarization has recently caught more attention, as it can generate differentiated summaries based on users' interests. However, the current dataset for aspect or query-based summarization either focuses on specific domains, contains relatively small-scale instances, or includes only a few aspect types. Such limitations hinder further explorations in this direction. In this work, we take advantage of crowd-sourcing knowledge on Wikipedia.org and automatically create a high-quality, large-scale open-domain aspect-based summarization dataset named OASum, which contains more than 3.7 million instances with around 1 million different aspects on 2 million Wikipedia pages. We provide benchmark results on OAsum and demonstrate its ability for diverse aspect-based summarization generation. To overcome the data scarcity problem on specific domains, we also perform zero-shot, few-shot, and fine-tuning on seven downstream datasets. Specifically, zero/few-shot and fine-tuning results show that the model pre-trained on our corpus demonstrates a strong aspect or query-focused generation ability compared with the backbone model. Our dataset and pre-trained checkpoints are publicly available.
translated by 谷歌翻译
When used in complex engineered systems, such as communication networks, artificial intelligence (AI) models should be not only as accurate as possible, but also well calibrated. A well-calibrated AI model is one that can reliably quantify the uncertainty of its decisions, assigning high confidence levels to decisions that are likely to be correct and low confidence levels to decisions that are likely to be erroneous. This paper investigates the application of conformal prediction as a general framework to obtain AI models that produce decisions with formal calibration guarantees. Conformal prediction transforms probabilistic predictors into set predictors that are guaranteed to contain the correct answer with a probability chosen by the designer. Such formal calibration guarantees hold irrespective of the true, unknown, distribution underlying the generation of the variables of interest, and can be defined in terms of ensemble or time-averaged probabilities. In this paper, conformal prediction is applied for the first time to the design of AI for communication systems in conjunction to both frequentist and Bayesian learning, focusing on demodulation, modulation classification, and channel prediction.
translated by 谷歌翻译
Patch-based models, e.g., Vision Transformers (ViTs) and Mixers, have shown impressive results on various visual recognition tasks, alternating classic convolutional networks. While the initial patch-based models (ViTs) treated all patches equally, recent studies reveal that incorporating inductive bias like spatiality benefits the representations. However, most prior works solely focused on the location of patches, overlooking the scene structure of images. Thus, we aim to further guide the interaction of patches using the object information. Specifically, we propose OAMixer (object-aware mixing layer), which calibrates the patch mixing layers of patch-based models based on the object labels. Here, we obtain the object labels in unsupervised or weakly-supervised manners, i.e., no additional human-annotating cost is necessary. Using the object labels, OAMixer computes a reweighting mask with a learnable scale parameter that intensifies the interaction of patches containing similar objects and applies the mask to the patch mixing layers. By learning an object-centric representation, we demonstrate that OAMixer improves the classification accuracy and background robustness of various patch-based models, including ViTs, MLP-Mixers, and ConvMixers. Moreover, we show that OAMixer enhances various downstream tasks, including large-scale classification, self-supervised learning, and multi-object recognition, verifying the generic applicability of OAMixer
translated by 谷歌翻译
Trying to capture the sample-label relationship, conditional generative models often end up inheriting the spurious correlation in the training dataset, giving label-conditional distributions that are severely imbalanced in another latent attribute. To mitigate such undesirable correlations engraved into generative models, which we call spurious causality, we propose a general two-step strategy. (a) Fairness Intervention (FI): Emphasize the minority samples that are hard to be generated due to the spurious correlation in the training dataset. (b) Corrective Sampling (CS): Filter the generated samples explicitly to follow the desired label-conditional latent attribute distribution. We design the fairness intervention for various degrees of supervision on the spurious attribute, including unsupervised, weakly-supervised, and semi-supervised scenarios. Our experimental results show that the proposed FICS can successfully resolve the spurious correlation in generated samples on various datasets.
translated by 谷歌翻译
无人驾驶基站(UABSS)可以部署在车辆无线网络中,以支持应用程序通过车辆到设备(V2X)服务等应用。此类系统中的一个关键问题是设计算法,该算法可以有效地优化UAB的轨迹,以最大程度地提高覆盖范围。在现有的解决方案中,通常通过常规加固学习(RL)从头开始进行此类优化。在本文中,我们建议将连续的元RL用作将信息从先前经验丰富的流量配置转移到新条件的手段,以减少优化UABS策略所需的时间。采用连续的元策略搜索(COMP)策略,与常规RL相比,我们表现出显着的效率提高,以及幼稚的转移学习方法。
translated by 谷歌翻译
这项工作仔细研究了传统的机器学习方法通​​过可靠性和鲁棒性的镜头应用于无线通信问题。深度学习技术采用了常见的框架,并已知提供校准较差的决策,这些决策不会再现由训练数据规模的限制引起的真正不确定性。贝叶斯学习原则上能够解决这一缺点,但实际上,模型错误指定和异常值的存在损害。在无线通信设置中,这两个问题都普遍存在,其中机器学习模型的能力受资源限制的影响,培训数据受噪声和干扰的影响。在这种情况下,我们探讨了强大的贝叶斯学习框架的应用。经过教程式的贝叶斯学习介绍,我们就精确,校准和对异常值和错误指定的鲁棒性进行了强大的贝叶斯学习对几个重要的无线沟通问题的优点。
translated by 谷歌翻译
Two of the main principles underlying the life cycle of an artificial intelligence (AI) module in communication networks are adaptation and monitoring. Adaptation refers to the need to adjust the operation of an AI module depending on the current conditions; while monitoring requires measures of the reliability of an AI module's decisions. Classical frequentist learning methods for the design of AI modules fall short on both counts of adaptation and monitoring, catering to one-off training and providing overconfident decisions. This paper proposes a solution to address both challenges by integrating meta-learning with Bayesian learning. As a specific use case, the problems of demodulation and equalization over a fading channel based on the availability of few pilots are studied. Meta-learning processes pilot information from multiple frames in order to extract useful shared properties of effective demodulators across frames. The resulting trained demodulators are demonstrated, via experiments, to offer better calibrated soft decisions, at the computational cost of running an ensemble of networks at run time. The capacity to quantify uncertainty in the model parameter space is further leveraged by extending Bayesian meta-learning to an active setting. In it, the designer can select in a sequential fashion channel conditions under which to generate data for meta-learning from a channel simulator. Bayesian active meta-learning is seen in experiments to significantly reduce the number of frames required to obtain efficient adaptation procedure for new frames.
translated by 谷歌翻译
我们介绍韩语了解评估(KLUE)基准。 Klue是8个韩国自然语言理解(nlu)任务的集合,包括主题分类,语言典的相似性,自然语言推断,命名实体识别,关系提取,依赖解析,机器阅读理解和对话状态跟踪。我们从各种源语料库中展开的所有任务,同时尊重版权,以确保任何没有任何限制的人的可访问性。考虑到道德考虑,我们仔细设计了注释协议。随着基准任务和数据,我们为每个任务提供适用的评估指标和微调配方,为每项任务进行预训练语言模型。我们还释放了预用的语言模型(PLM),Klue-Bert和Klue-Roberta,以帮助在KLUE上再现基线模型,从而促进未来的研究。我们通过拟议的Klue基准套件从初步实验中进行了一些有趣的观察,已经证明了这款新的基准套件的有用性。首先,我们找到了klue-roberta-mantring的其他基线,包括多语种plms和现有的开源韩国plms。其次,即使我们从预先预测语料库中取代个人身份信息,我们也会看到性能下降最小,这表明隐私和NLU能力并不彼此可能。最后,我们发现,使用BPE标记与语素级预象的组合,在涉及语素级标记,检测和发电的任务中是有效的。除了加速韩国人NLP研究外,我们的创建Klue的全面文件将有助于将来为其他语言创建类似的资源。 klue在https://klue-benchmark.com上提供。
translated by 谷歌翻译
Novelty detection, i.e., identifying whether a given sample is drawn from outside the training distribution, is essential for reliable machine learning. To this end, there have been many attempts at learning a representation well-suited for novelty detection and designing a score based on such representation. In this paper, we propose a simple, yet effective method named contrasting shifted instances (CSI), inspired by the recent success on contrastive learning of visual representations. Specifically, in addition to contrasting a given sample with other instances as in conventional contrastive learning methods, our training scheme contrasts the sample with distributionally-shifted augmentations of itself. Based on this, we propose a new detection score that is specific to the proposed training scheme. Our experiments demonstrate the superiority of our method under various novelty detection scenarios, including unlabeled one-class, unlabeled multi-class and labeled multi-class settings, with various image benchmark datasets. Code and pre-trained models are available at https://github.com/alinlab/CSI.
translated by 谷歌翻译